The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  2  1  0  1 X^2  1  1  X  1  1
 0  X  0 X^2+X+2  2 X^2+X  0  X X^2 X^2+X+2 X^2+2 X+2  X X^2+2 X^2+2  X X^2+X+2  X  X  X X^2+X  2 X^2+X X^2+X  2
 0  0 X^2+2  0  2 X^2+2 X^2+2 X^2 X^2 X^2  2 X^2  2  0 X^2 X^2+2  0 X^2+2  2  0  0 X^2 X^2+2 X^2+2  0
 0  0  0 X^2+2 X^2+2 X^2 X^2+2  2  0  0 X^2+2 X^2+2  2  2 X^2  2  2 X^2 X^2 X^2+2  0  2 X^2+2 X^2+2 X^2+2

generates a code of length 25 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 21.

Homogenous weight enumerator: w(x)=1x^0+28x^21+161x^22+176x^23+482x^24+378x^25+494x^26+152x^27+122x^28+24x^29+13x^30+8x^31+2x^32+2x^33+4x^34+1x^40

The gray image is a code over GF(2) with n=200, k=11 and d=84.
This code was found by Heurico 1.16 in 0.031 seconds.